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Abstract— In this paper, we introduce a new real-time method for assessing the reproduction movements of a patient compared to 

expected movements during rehabilitation exercises. A global analysis is also conducted to evaluate the quality of execution. The method 

relies on human key point detection and the use of the Fréchet distance metric. This method enables the application to alert the patient 

when their movement deviates from the expected one: the intended movement and an error message are visually displayed. The advantage 

of our method lies in its dynamic capability and the precise percentage accuracy of the patient’s performance provided at the end of the 

rehabilitation exercise. 

 

Index Terms— Exoskeleton, Movement Evaluation, Rehabilitation, Simulation. 

I. INTRODUCTION 

In recent years, the use of collaborative robots has 

increased. Numerous applications exist, including medicine 

[1][2], education [3], army [4], etc. Collaborative robots are 

designed to work with humans. They are considered as 

assistive technologies to help in daily life whether at work, at 

school, or at home. 

A medical exoskeleton is an example of a collaborative 

complex electro-mechanical robot. Also known as a wearable 

system. It is also called a wearable system, it is worn by a 

human and matches their body [5]. In medical applications, 

exoskeletons are used for paraplegic patients, stroke patients, 

disabled/amputated patients, and for daily compensation [6]. 

An increasing number of rehabilitation institutions are 

adopting exoskeleton rehabilitation robots for treatments, 

leading to rapid growth in the medical exoskeleton market. 

This growth is driven by the increasing demand for effective 

rehabilitation approaches for a growing number of patients. 

However, a significant challenge remains: the digital 

evaluation of the quality of the movement performed by the 

patient during exercises, whether in real-time or globally. 

In response to this challenge, this paper introduces a 

method capable of assessing the quality of the patient’s upper 

limb movements in real-time during a rehabilitation exercise. 

In the absence of a physical rehabilitation exoskeleton, we 

have developed an application that animates an expected 

movement and compares it with the patient’s movement. The 

patient must observe and try to replicate the expected 

movement in real-time. The application can alert the patient 

in real-time if the movement deviates and will provide a 

global similarity score at the end of the exercise. Therefore, 

the method developed focuses on comparing the movement 

of patients with the expected movements within a 2D 

environment. 

This paper is structured as follows. A state-of-the-art 

overview is presented in the next section (Section II). 

Subsequently, the global scenario used for this work is 

presented in Section III. The methodology that leads to the 

final evaluation method is described in Section IV. The 

results obtained from the proposed method are presented in 

Section V, followed by the conclusion in Section VI. 

II. STATE OF THE ART 

The evaluation of human movements holds significant 

importance in various fields, especially in the context of 

rehabilitation. 

In [7], a patient undergoes home-based rehabilitation 

exercises. Using the PoseNet model, body key points are 

identified. Distances and angles between left and right 

elbows, as well as left and right knees, are calculated. These 

data are stored for remote access by the doctor to assess 

Improving Rehabilitation Practices: A Real-

Time Method for Assessing the Reproduction 

Quality of a Given Recovery Exercise Executed 

by a Patient 



    ISSN (Online) 2394-2320 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE) 

 Volume 11 Issue 7 July 2024 

 

22 

exercise accuracy based on angular measurements, allowing 

for timely corrective instructions. 

In [8], the study evaluated the reliability and validity of 

using Mediapipe in rehabilitation sessions. While the 

technique was validated for calculating movement 

amplitudes, precise validation of anatomical key points was 

lacking. Our goal is to analyze upper body movements using 

anatomical key point 2D coordinates. 

A movement comparison study was conducted using a 3D 

space, as referenced in [9]. Patients replicated Tai Chi 

movements. Movements comparison was achieved by 

calculating Euclidean distances from normalized 3D 

coordinates of anatomical reference points. The method was 

successfully tested on two patients to assess system efficacy, 

accurately determining if movements between virtual 

teachers and real students were identical. However, the 

depicted body trajectory suggests certain anatomical points, 

notably the elbow, were not precisely identified. 

Authors in [10] used real-time 2D Fréchet distance on 

Bézier curves, created from anatomical key point coordinates 

over time, to compare movement similarity between real and 

virtual humans. They obtained key points coordinates using 

the OpenPose AI model. To address missing coordinate gaps, 

existing coordinates were used to generate necessary 

intermediate points for Fréchet distance calculation. 

However, this method’s reliance on random generation of 

intermediate points introduces potential inherent imprecision 

to compare movement similarity. 

Our proposed method will be based on an AI model 

capable of capturing all data without any loss during 

exercises. Movement comparison will rely on the Fréchet 

distance metric, based on the coordinates of each human key 

point collected. Moreover, the literature insufficiently 

addresses the calculation of success scores, specifically based 

on results obtained with the Fréchet Distance metric. 

III. SCENARIO 

The real-time method for assessing patient movement 

compared to the expected movement was established through 

a general scenario as shown in Fig. 1:  

 
Fig. 1. Scenario representing our method of movement 

evaluation. 

This scenario can be described with the following steps: 

1) The computer reads an exercise file. 

2) The computer animates the virtual exercise file. 

3) The patient observes and tries to reproduce the virtual 

exercise. 

4) A camera films the patient’s movements. 

5) The computer reads and analyzes images from the 

camera. Then patient key point coordinates are 

compared to these in the exercise file with a metric. 

6) The patient’s movements are represented by a virtual 

patient. 

7) In accordance with a defined parameter that manages 

the display, we can have two options: 

a) If the reproduction is correct, the” Exercise on 

going” message appears. 

b) If the reproduction deviates from what is expected, 

a visual alert occurs (the intended movement is 

displayed, and an alert message is shown on the 

animation). 

In all steps, we use frames 𝑇 that represent the x or y 

coordinates of each point of the upper limbs: wrist (w), elbow 

(𝑒), and shoulder (𝑠), on both the right (𝑟) and left (𝑙) sides as 

represented by Fig. 2 and the following formula (1). 

 
Fig. 2. Patient’s upper limb key points. 

𝑇 = (𝑥𝑤𝑙, 𝑦𝑤𝑙), (𝑥𝑤𝑟, 𝑦𝑤𝑟), (𝑥𝑒𝑙, 𝑦𝑒𝑙), 
(𝑥𝑒𝑟, 𝑦𝑒𝑟), (𝑥𝑠𝑙, 𝑦𝑠𝑙), (𝑥𝑠𝑟, 𝑦𝑠𝑟)   (1) 

 

A movement 𝑚 is formed by a succession of frames 𝑖, as 

characterized by the formula (2): 

𝑚 = (𝑥𝑤𝑙𝑖 , 𝑦𝑤𝑙𝑖), (𝑥𝑤𝑟𝑖 , 𝑦𝑤𝑟𝑖), (𝑥𝑒𝑙𝑖 , 𝑦𝑒𝑙𝑖), 
(𝑥𝑒𝑟𝑖 , 𝑦𝑒𝑟𝑖), (𝑥𝑠𝑙𝑖 , 𝑦𝑠𝑙𝑖), (𝑥𝑠𝑟𝑖 , 𝑦𝑠𝑟𝑖)    (2) 

The AI model for human pose recognition, needed to 

exhibit high performance and avoid data loss to ensure 

smooth graphical reproduction of human movements. After 

experimenting with and reviewing scientific literature on 

several AI models, including MoveNet, PoseNet, and Open-

Pose [11], [12], in a well-lit environment: the MoveNet AI 

model meets these criteria for this work. We’ve applied this 

model in our proposed method. 

Game files are used to animate the expected movement 

(steps 1 to 2). These files included frames T used to simulate 

movement. With the aid of dedicated software, these files 

facilitated the dynamic animation of the movement. The 

animation synchronization between the animated exercise 
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and the patient’s real movement was achieved through the 

implementation of a parallel programming methodology. 

Each frame captured by the camera corresponded to the 

reading of a line within the game file. Data used for the 

expected movement (steps 1 to 2) and the patient’s movement 

(steps 3 to 6) are formatted identically for the movement 

analysis. 

The main challenge in this paper lies in steps 5 to 7. Step 5 

aims to devise a methodology for comparing the movements 

of the patient with those of the expected movement. 

Meanwhile, steps 6 and 7, seek to implement real-time alerts 

to notify the patient when their movements deviate. Finally, 

a performance score is generated after each exercise. 

IV. METHODOLOGY 

In this section, we present our methodology that leads to 

the final evaluation method: comparing movements in real-

time and notifying the patient when their movements differ 

from what is expected. 

A. Curves of movement 

To explain the methodology, we only talk about the x-

coordinate of the right wrist during the first steps. The curve 

of the movement performed by the patient and the expected 

movement, are first generated separately (Fig. 3). 

 
Fig. 3. Curves representing the evolution of one 

coordinate of one key point for patient and expected 

movements. 

The two curves will be placed on the same graph (Fig. 4). 

 
Fig. 4. Patient’s and expected movements we want to 

compare. 

The curves’ similarity will be analyzed with a metric. A 

similarity means the patient’s movement is correct but if there 

are deviations, this means the patient’s movement isn’t 

correct. 

B. Fréchet Distance 

The Fréchet Distance metric 𝑑𝑓 was selected according to 

the state of the art. This metric compares the similarity 

between two curves. To calculate the Fréchet Distance value, 

several steps are involved. Firstly, we use the coordinates of 

two curves (𝐿1 and 𝐿2) to compute Euclidean distance and 

get a Distance Matrix 𝑀𝐷. 𝐿1𝑖 corresponds to value number 

𝑖 on the first curve, and 𝐿2𝑗  corresponds to value number 𝑗 on 

the second curve (3): 

𝑀𝐷𝑖,𝑗 = 𝑑(𝐿1𝑖 , 𝐿2𝑗)  (3) 

Then we use the Distance Matrix to establish the Fréchet 

Distance Matrix 𝑀𝐹 with the following recursive formula: 

𝑀𝐹𝑖,𝑗 = 𝑚𝑎𝑥 (𝑀𝐷𝑖,𝑗 , (𝑀𝐹𝑖−1,𝑗  , 𝑀𝐹𝑖,𝑗−1, 𝑀𝐹𝑖−1,𝑗−1))  (4) 

In our study, we apply the Fréchet distance to compare the 

expected movement 𝑚𝑒𝑥 curves and the patient’s movement 

𝑚𝑝 curves (5): 

𝑑𝑓 = 𝑓(𝑚𝑒𝑥 , 𝑚𝑝)  (5) 

C. Curve Sampling 

According to the literature, the Fréchet distance metric is 

rarely applied in a real-time application. To achieve real-time 

movement analysis, a sample analysis was conducted. The 

expected movement files are known, and a general sampling 

was performed based on these files, as shown in Fig. 5. 

 
Fig. 5. Example of sampling on a curve representing the 

evolution of the x or y coordinate of a human anatomical 

key point. 

Each sequence 𝑠𝑖 represents either a positive or negative 

slope. Therefore, during real-time analysis, we examine the 

two curves sequence by sequence (6). 

∀𝑖 ∈ [1, 𝑛], 𝑑𝑓 = 𝑓(𝑚𝑒𝑥[𝑠𝑖], 𝑚𝑝[𝑠𝑖])  (6) 

D. General application for movement comparison 

Up to now, we’ve only discussed work conducted on the 

x-coordinate of the right wrist. However, the Fréchet distance 

also applies to all other coordinates of each reference 

anatomical point, denoted by the variable a, ranging from 1 

to 12 as shown in Fig. 6. 

 
Fig. 6. Variable a representing all coordinates in our study 

Due to the sampling conducted on the curves representing 

the evolution of the x or y coordinates of human anatomical 

key points, Fréchet distance calculations will be performed 
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on the lengths of these determined sequences according to the 

coordinates point 𝑛𝑎 in (7): 

∀𝑎 ∈ [1,12], ∀𝑖 ∈ [1, 𝑛𝑎], 𝑑𝑓

= 𝑓(𝑚𝑒𝑥[𝑎][𝑠𝑖], 𝑚𝑝[𝑎][𝑠𝑖])  (6) 

E. Notifying the patient in real-time 

We’ve established a real-time movement comparison 

method between the patient’s and expected movements. We 

need to identify when the patient’s movement deviates from 

the expected one. 

Whenever such a deviation occurs, the patient receives two 

graphical notifications: a corrective message and a graphical 

representation indicating the ideal position the patient should 

adopt, as illustrated in Fig. 1. 

To address this, we have introduced a parameter known as 

the tolerance threshold 𝑠𝑡. Generally, a tolerance threshold is 

a predefined value used to determine the acceptable range of 

deviations in results or data. This parameter will be applied 

to the Fréchet Distance results curve obtained during 

movement analysis, as represented in Fig. 7. 

 
Fig. 7. Fréchet distance result curve obtained for the x 

coordinate of the right wrist between the patient’s 

movement and the expected movement. 

We can observe from the Fréchet distance results that the 

curve exceeds the tolerance threshold twice, indicating that 

the patient’s movement differs from the expected movement. 

Our objective is to determine an optimal value for the 

tolerance threshold. We need to test several values of 𝑠𝑡. 

Therefore, an initial range of these values must be defined. 

This range can be determined based on the size of the 

images, as shown in Fig. 8. 

 
Fig. 8. 𝑠𝑡 range of values based on image size. 

Let’s consider that on the left or the right representation, 

one point represents one of the key points belonging to the 

patient, and another key point belongs to the expected 

movement. These points represent the same key points (wrist, 

elbow, or shoulder, left or right) with a distance between 

them. In the left representation, the maximum value will be 

𝐻 pixels, while in the right representation, the maximum 

value will be 𝐿 pixels. From now on, the minimum and 

maximum values of the possible interval 𝑠𝑡 are determined in 

a generalized manner (8). 

𝑠𝑡 ∈ [0, (𝐻, 𝐿)]  (8)  
Our objective is to conduct an analysis within this interval 

in order to get as close as possible to the optimal value of the 

tolerance threshold.  

In Artificial Intelligence, the Mean Squared Error (MSE) 

is commonly used to assess the accuracy of prediction 

models, particularly in regression. A lower MSE indicates 

better model accuracy. 

In the quest for the optimal tolerance threshold value, the 

utilization of the MSE is contemplated to assess the 

agreement between known scores denoted as 𝑠𝑐𝑜𝑟𝑒𝑘and 

estimated scores, denoted as 𝑠𝑐𝑜𝑟𝑒𝑒𝑠𝑡  (9). 

𝑀𝑆𝐸 =  
1

𝑛
∑

𝑛

𝑖+1

(𝑠𝑐𝑜𝑟𝑒𝑘 , 𝑠𝑐𝑜𝑟𝑒𝑒𝑠𝑡)2  (9) 

To search for the optimal tolerance value, we initially 

examined various tolerance values to ensure that the known 

and estimated scores were both verified. Subsequently, we 

calculated the MSE values for each of these tolerance values 

as demonstrated in Fig. 9. 

 
Fig. 9. Evolution of the MSE values according to tolerances 

values tested. 

The optimal value of tolerance threshold (𝑠𝑡𝑜𝑝𝑡) is the 
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objective (10): 

𝑠𝑡𝑜𝑝𝑡 = (𝑀𝑆𝐸) (10)  

According to results obtained from the Fig. 9, the MSE 

minimum value is obtained when the tolerance value is set to 

54. The figure 10 represents 𝑀𝑆𝐸 = 𝑓(𝑠𝑡) when 𝑠𝑡 is set to 

54 (11). 

𝑦 = 𝑠𝑡𝑜𝑝𝑡  × 𝑥  (11) 

 
Fig. 10. MSE curve obtained with a tolerance value defined 

to 54. 

F. Exercise global score 

For each exercise 𝑒 performed by the patient, a success 

score𝑠𝑐𝑜𝑟𝑒𝑝, representing the similarity between the 

expected and the patient movements, is generated as an 

exercise conclusion. However, the score established depends 

on the tolerance threshold and the exercise (12). 

𝑠𝑐𝑜𝑟𝑒𝑝 = 𝑓(𝑠𝑡, 𝑒)  (12) 

The score based on the tolerance threshold value is 

calculated using the following formula, where 𝑛 represents 

the frame number from the exoskeleton movement file read 

during the exercise (13): 

𝑠𝑐𝑜𝑟𝑒𝑝 = 100 − (
(∑𝑛

𝑗=0 (∑12
𝑎=1 𝑑𝑓𝑗[𝑎] > 𝑠𝑡))

𝑎 × 𝑛
 

×  100 ) (13) 
At the end of the exercise, the physiotherapist obtains a 

score. It’s compared with previous scores obtained by the 

same patient to determine if there is any progress. 

G. The strengths of the method 

By employing human key point detection and the Fréchet 

distance metric in real-time, our approach enables continuous 

movement quality assessment. It provides visual feedback to 

alert patients when deviations from the expected gesture 

occur. 

The objective of this study was to demonstrate the 

feasibility and effectiveness of our proposed method for 

enhancing rehabilitation outcomes by promoting movement 

accuracy and consistency. 

Additionally, we aim to showcase the utility of our 

approach in calculating a similarity score between patient 

movements and expected movements, thus providing 

clinicians/doctors with a quantitative measure of 

performance.  

V. RESULTS 

This section presents results obtained when our method is 

applied to a good or a poor movement. The analysis is focused 

on the coordinates x and y of the right wrist in all cases. 

A. Analyze of a good movement 

The patient has well executed the exercise proposed. There 

are some minor variations on the evolution of x and y 

coordinates compared to the expected one as presented in Fig. 

11. 

 
Fig. 11. Evolution of x and y coordinate of the right wrist 

during a good movement. 

When a movement is executed perfectly, the Fréchet 

distance curves appear normal with only minor variations as 

on Fig. 12. The tolerance threshold value has not been 

exceeded during the exercise. This indicates that the patient’s 

movements were correct throughout the entire execution. 

 
Fig. 12. Fréchet Distance curve obtained from the Fig. 11 

The global similarity score of this exercise is: 100%. 

B. Analyze of a poor movement 

However, in the case of imperfect movement, the curves 

are different (Fig. 13). We observe a significant gap in the 𝑦 

coordinate of the right wrist between 2.5 seconds and 8 

seconds. 

 
Fig. 13. Evolution of 𝑥 and 𝑦 coordinate of the right wrist 

during a poor movement. 

When we applied the Fréchet distance, results are 
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presented by Fig. 14. 

 
Fig. 14. Fréchet Distance curve obtained from the Fig. 13 

The tolerance threshold has been exceeded during 62% of 

the exercise. This indicates the patient’s movements were 

incorrect. The global similarity score for this exercise is 100- 

62 = 38%. 

VI. CONCLUSION 

We propose a practical and precise tool for 

physiotherapists and patients. Thanks to real-time 

notifications and the robust selection of the AI model for 

detecting human anatomical key points, patients can correct 

their movement when deviations from expected movements 

occur in a 2D environment. Additionally, the global similarity 

score displayed at the end of each exercise allows medical 

professionals to observe the progression of one or more 

patients more accurately. Physiotherapists can also adjust 

future rehabilitation sessions accordingly.  

Looking ahead, there is potential to extend the proposed 

method into a 3D coordinate system for further evaluation. A 

new step can be added to the scenario presented in Fig. 1 

when the patient’s movement deviates too much, a physical 

exoskeleton can take control and assist the patient in 

correcting their movement.  

Beyond medical applications, this method holds promise 

for broader use, such as in video games where players 

replicate on-screen dances, eliminating the need for costly 

equipment or sensors. Importantly, our method offers the 

advantage of real-time movement recording without 

requiring additional equipment on the person being 

monitored. 
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